Documentation

LLMITE Documentation #

Welcome to the LLMITE documentation. This section contains comprehensive guides and references for using LLMITE.

Getting Started #

API Reference #

Examples #

Getting Started

Getting Started with LLMITE #

This guide will help you get up and running with LLMITE quickly.

Prerequisites #

Before you begin, make sure you have:

  • A modern web browser
  • Basic understanding of web technologies
  • Access to the LLMITE platform

Quick Setup #

  1. Sign up for an account

    • Visit the LLMITE homepage
    • Click “Sign Up” and complete the registration process
  2. Verify your email

    • Check your email for a verification link
    • Click the link to activate your account
  3. Create your first project

Installation

Installation Guide #

Learn how to install and configure LLMITE for your specific environment.

System Requirements #

Minimum Requirements #

  • 4GB RAM
  • 2GB available disk space
  • Internet connection
  • 8GB RAM or more
  • 5GB available disk space
  • High-speed internet connection

Installation Methods #

Method 1: Quick Install #

1
curl -sSL https://get.llmite.com | bash

This script will:

  • Download the latest version
  • Install dependencies
  • Configure your environment
  • Verify the installation

Method 2: Manual Installation #

  1. Download the package

API Reference

API Reference #

Complete reference for the LLMITE API.

Base URL #

All API requests should be made to:

https://api.llmite.com/v1

Authentication #

All API requests require authentication using an API key:

1
2
curl -H "Authorization: Bearer YOUR_API_KEY" \
     https://api.llmite.com/v1/endpoint

Endpoints #

Projects #

List Projects #

1
GET /projects

Response:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
{
  "projects": [
    {
      "id": "proj_123",
      "name": "My Project",
      "created_at": "2024-01-01T00:00:00Z",
      "status": "active"
    }
  ]
}

Create Project #

1
POST /projects

Request Body:

Authentication

Authentication #

Learn how to authenticate with the LLMITE API.

API Keys #

LLMITE uses API keys for authentication. You can manage your API keys from the dashboard.

Getting Your API Key #

  1. Log in to your LLMITE dashboard
  2. Navigate to “Settings” → “API Keys”
  3. Click “Generate New Key”
  4. Copy and securely store your key
**Security Notice** Never share your API keys publicly or commit them to version control. Store them securely as environment variables.

Using API Keys #

Include your API key in the Authorization header:

Examples

Examples #

Practical examples to help you get started with LLMITE.

Basic Usage #

Simple Text Processing #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import requests

api_key = "sk-1234567890abcdef"
headers = {"Authorization": f"Bearer {api_key}"}

response = requests.post(
    "https://api.llmite.com/v1/models/text-processor/execute",
    headers=headers,
    json={
        "input": "Hello, world!",
        "parameters": {
            "temperature": 0.7
        }
    }
)

result = response.json()
print(result["output"])

Project Management #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
# List all projects
response = requests.get(
    "https://api.llmite.com/v1/projects",
    headers=headers
)
projects = response.json()["projects"]

# Create a new project
new_project = requests.post(
    "https://api.llmite.com/v1/projects",
    headers=headers,
    json={
        "name": "My New Project",
        "description": "A sample project"
    }
)

JavaScript Examples #

Using Fetch API #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
const apiKey = 'sk-1234567890abcdef';

async function processText(input) {
    const response = await fetch('https://api.llmite.com/v1/models/text-processor/execute', {
        method: 'POST',
        headers: {
            'Authorization': `Bearer ${apiKey}`,
            'Content-Type': 'application/json'
        },
        body: JSON.stringify({
            input: input,
            parameters: {
                temperature: 0.7,
                max_tokens: 100
            }
        })
    });
    
    const result = await response.json();
    return result.output;
}

// Usage
processText("Translate this to French: Hello world")
    .then(output => console.log(output));

Node.js with Express #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
const express = require('express');
const axios = require('axios');

const app = express();
const apiKey = process.env.LLMITE_API_KEY;

app.use(express.json());

app.post('/process', async (req, res) => {
    try {
        const response = await axios.post(
            'https://api.llmite.com/v1/models/text-processor/execute',
            {
                input: req.body.text,
                parameters: req.body.parameters || {}
            },
            {
                headers: {
                    'Authorization': `Bearer ${apiKey}`
                }
            }
        );
        
        res.json(response.data);
    } catch (error) {
        res.status(500).json({ error: error.message });
    }
});

app.listen(3000, () => {
    console.log('Server running on port 3000');
});

Curl Examples #

Basic Request #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
curl -X POST https://api.llmite.com/v1/models/text-processor/execute \
  -H "Authorization: Bearer sk-1234567890abcdef" \
  -H "Content-Type: application/json" \
  -d '{
    "input": "Summarize this text: Lorem ipsum dolor sit amet...",
    "parameters": {
      "temperature": 0.5,
      "max_tokens": 50
    }
  }'

Batch Processing #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
curl -X POST https://api.llmite.com/v1/models/text-processor/batch \
  -H "Authorization: Bearer sk-1234567890abcdef" \
  -H "Content-Type: application/json" \
  -d '{
    "inputs": [
      "First text to process",
      "Second text to process",
      "Third text to process"
    ],
    "parameters": {
      "temperature": 0.7
    }
  }'

Error Handling #

Python with Error Handling #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import requests
from requests.exceptions import RequestException

def safe_api_call(endpoint, data):
    try:
        response = requests.post(
            f"https://api.llmite.com/v1/{endpoint}",
            headers={"Authorization": f"Bearer {api_key}"},
            json=data,
            timeout=30
        )
        response.raise_for_status()
        return response.json()
    
    except requests.exceptions.Timeout:
        print("Request timed out")
    except requests.exceptions.HTTPError as e:
        print(f"HTTP error: {e.response.status_code}")
        print(f"Error details: {e.response.json()}")
    except RequestException as e:
        print(f"Request failed: {e}")
    
    return None

Advanced Examples #

Streaming Responses #

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import requests
import json

def stream_response(prompt):
    response = requests.post(
        "https://api.llmite.com/v1/models/text-processor/stream",
        headers={"Authorization": f"Bearer {api_key}"},
        json={"input": prompt, "stream": True},
        stream=True
    )
    
    for line in response.iter_lines():
        if line:
            data = json.loads(line.decode('utf-8'))
            if 'content' in data:
                print(data['content'], end='', flush=True)

Advanced Usage

Advanced Usage #

Advanced techniques and patterns for working with LLMITE.

Custom Models #

Training Your Own Model #

LLMITE allows you to train custom models using your own data:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
import llmite

client = llmite.Client(api_key="your-api-key")

# Upload training data
training_job = client.models.train(
    name="my-custom-model",
    training_data="path/to/training.jsonl",
    validation_data="path/to/validation.jsonl",
    parameters={
        "learning_rate": 0.001,
        "batch_size": 32,
        "epochs": 10
    }
)

# Monitor training progress  
status = client.models.get_training_status(training_job.id)

Fine-tuning Existing Models #

1
2
3
4
5
6
7
8
9
# Fine-tune a pre-trained model
fine_tune_job = client.models.fine_tune(
    base_model="llmite-base-v1",
    training_data="path/to/fine_tune_data.jsonl",
    parameters={
        "learning_rate": 0.0001,
        "epochs": 3
    }
)

Batch Processing #

Large Scale Processing #

For processing large amounts of data efficiently: